

Edixeon Amber HB Series Datasheet

Features:

- More energy efficient than incandescent and most halogen lamps
- Low voltage operation
- Instant light
- Long operating life

Table of Contents

General Information	3
Absolute Maximum Ratings	4
Characteristics	4
Luminous Flux Characteristic	5
Voltage Bin Structure	5
Mechanical Dimensions	6
Characteristic curve	7
Color Bins	
Reliability	13
Product Packaging Information	14
Revision History	15
About Edison Opto	15

General Information

Introduction

Edixeon Amber HB series emitters are one of the highest power LEDs in the world by Edison Opto. Edixeon Amber HB series emitters are designed to satisfy more and more Solid-State lighting High Power signaling, signage and entertainment applications.

Ordering Code Format

	X1		X2		Х3	X	(4	:	X5
٦	Гуре	Com	ponent	S	eries	Wat	tage	C	olor
2	Emitter	Е	Edixeon	A1	A1 Series	01	1W	AX	Amber

Xe	5	Х	7	X	8
Interna	Internal code		Board	Serial N	lumber
19	-	000	-	-	-

Absolute Maximum Ratings

Parameter	Symbol	Value	Units
DC Forward Current	I _F	350	mA
Peak Pulsed Current; (tp≤100μs, Duty cycle=0.25)	I _{pulse}	700	mA
Reverse Voltage	V_{R}	5	V
Drive Voltage	V_{D}	5	V
LED Junction Temperature	T_{J}	125	°C
Operating Temperature	-	-30 ~ +110	°C
Storage Temperature	-	-40 ~ +120	°C
ESD Sensitivity (HBM)	-	2,000	V
Manual Soldering Time at 260°C(Max.)	-	5	Sec.

Notes:

- 1. Proper current derating must be observed to maintain junction temperature below the maximum at all time.
- 2. LEDs are not designed to be driven in reverse bias.
- 3. tp: Pulse width time

Characteristics

Parameter	Symbol	Value	Units
Viewing Angle	2Θ _{1/2}	120	Degree
Thermal resistance	-	10	°C/W
$\Delta V_{\rm p}/\Delta T$	$\Delta V_{F}/\Delta T$	-2	mV/°C
Wavelength	λd	588-592	nm
JEDEC Moisture Sensitivity	Level 2a Floor Life Conditions: ≤30°C / 60% RH Soak Requirements(Standard) Time (hours): 120+1/-0 Conditions: 60°C / 60% RH		-

- 1. Wavelength is measured with an accuracy of $\pm\,0.5\text{nm}.$
- 2. Viewing anlge is measured with an accuracy of ± 10 Degree.
- 3. CIE_x/y tolerance: ± 0.005 .

Luminous Flux Characteristic

Luminous Flux Characteristics at I_F=350mA, T_J=25°C

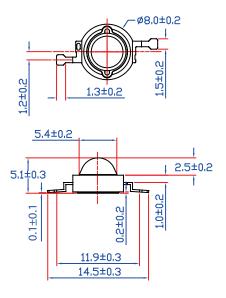
Color	Wattage (W)	Group	Min. Luminous Flux (lm)	Max. Luminous Flux (lm)	Forward Current (mA)	Order Code
Amber	1	T0	66.5	86.5	350	2EA101AX19000002
Allibei	•	U0	86.5	110	350	2LA101AX19000002

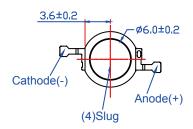
Note:

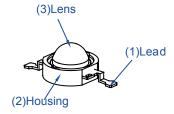
Flux is measured with an accuracy of \pm 10%.

Voltage Bin Structure

Group	Min. Voltage (V)	Max. Voltage (V)
V01	2.8	3.1
V02	3.1	3.4
V03	3.4	3.7


Note:

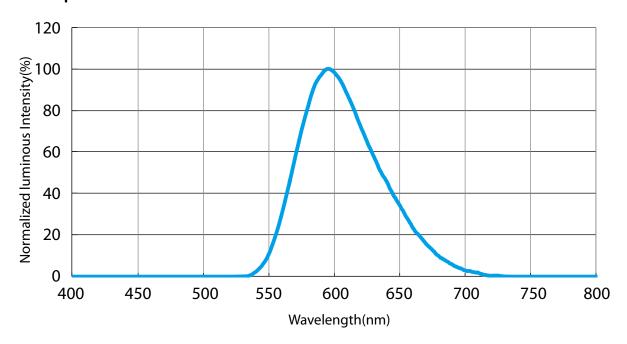

Forward voltage measurement allowance is $\pm\,0.06$ V.



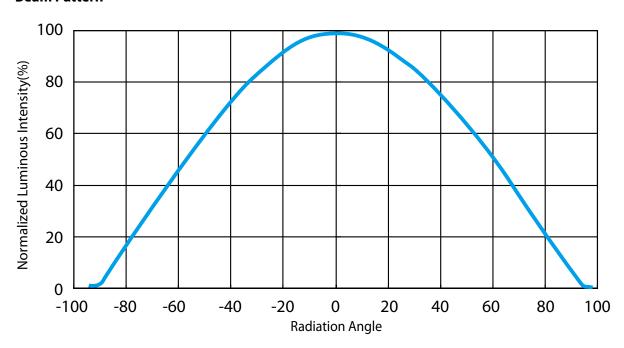
Mechanical Dimensions

Emitter Type Dimension

Emitting Color	Slug at the bottom of the electrode	Circuit
Amber	No electrode	+ 0 - 0 -

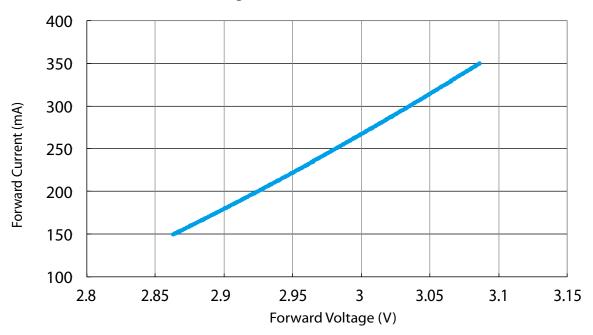

Notes:

- 1. All dimensions are in mm.
- 2. It is strongly recommended that the temperature of lead doesn't exceed 55°C.
- 3. It is important that the slug can't contact aluminum surface, It is strongly recommended that there should coat a uniform electrically isolated heat dissipation film on the aluminum surface.

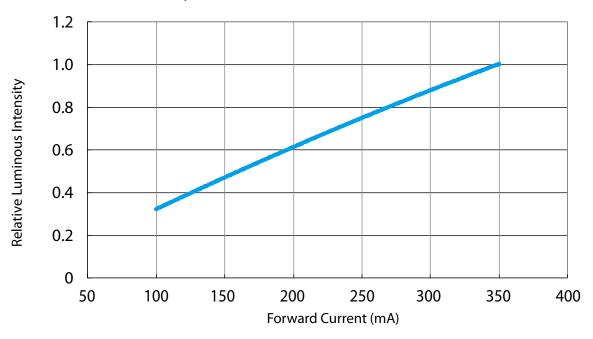


Characteristic curve

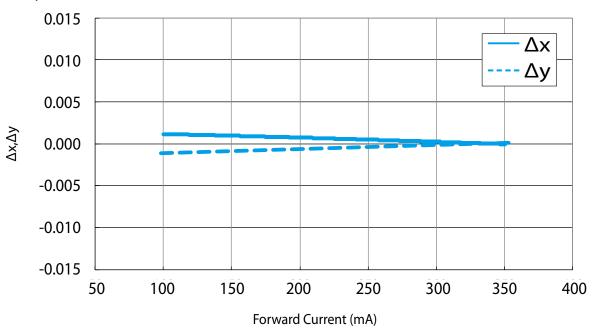
Color Spectrum



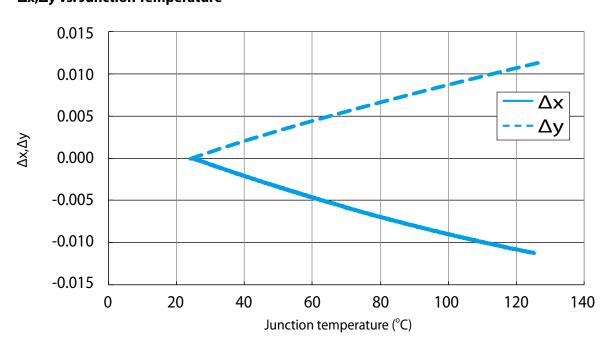
Beam Pattern



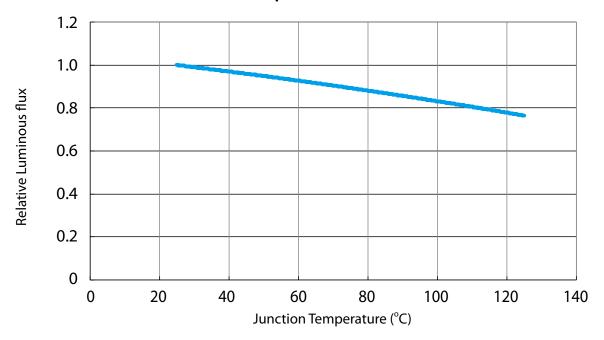
Forward Current vs. Forward Voltage



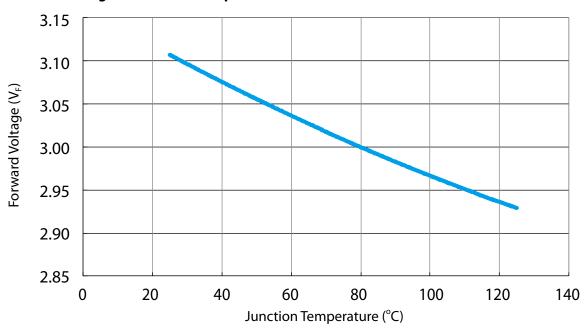
Relative Luminous Intensity vs. Forward Current



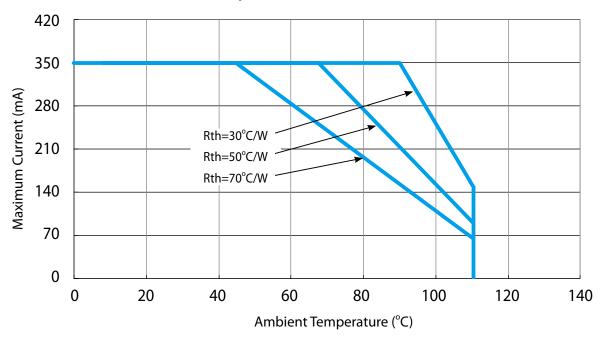
Δx,Δy vs. Forward Current



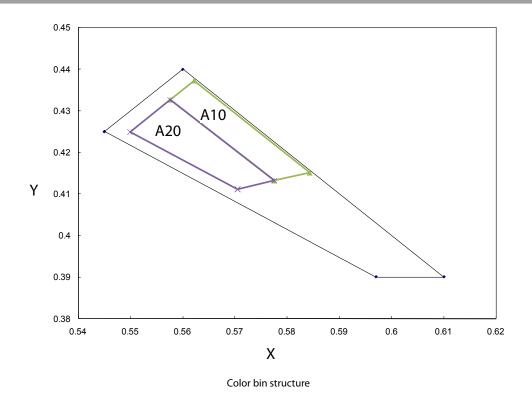
Δx,Δy vs. Junction Temperature



Relative Luminous Flux vs. Junction Temperature



Forward Voltage vs. Junction Temperature



Maximum Current vs. Ambient Temperature

Color Bins

Amber HB Series bin Coordinate

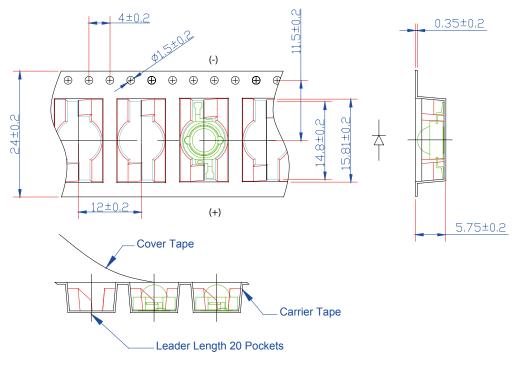
Group	Х	Υ
	0.5622	0.4372
A10	0.5576	0.4326
ATO	0.5775	0.4132
	0.5843	0.4151
	0.5705	0.4111
A20	0.5775	0.4132
	0.5576	0.4326
	0.5499	0.4249

Reliability

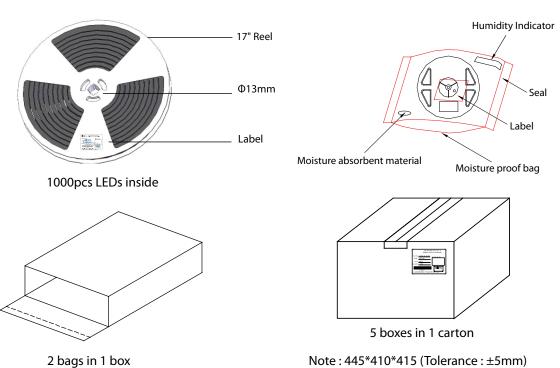
NO.	Test Item	Test Condition	Remark
1	Temperature Cycle	-40°C~100°C 30, 30, mins	100 Cycle
2	Thermal Shock	-40°C~100°C 15, 15 mins ≦ 10 sec	100 Cycle
3	Resistance to Soldering Heat	T _{SOL} =260°C, 30 sec	3 times
4	Moisture Resistance	25°C~65°C 90% RH 24 hrs / 1 cycle	10 Cycle
5	High-Temperature Storage	T _A =100°C	1,000 hrs
6	Humidity Heat Storage	T _A =85°C RH=85%	1,000 hrs
7	Low-Temperature Storage	T_A =-40°C	1,000 hrs
8	Operation Life test	25°C	1,000 hrs
9	High Temperature Operation Life test	85°C	1,000 hrs
10	High Humidity Heat Life Test	85°C, 85%RH	1,000 hrs
11	ON/OFF Test	30 sec ON, 30 sec OFF	10W times

Failure Criteria

ltem	Criteria for Judgment		
Itelli	Min.	Max.	
Lumen Maintenance	85%	-	
∆ u'v'	-	0.006	
Forward Voltage	-	Initial Data x 1.1	
Reverse Current	-	10 μΑ	
Resistance to Soldering Heat	No dead lamps or visual damage		


Cautions

LED avoids being stored and lighted in the environment containing sulfur. Some matrrials, such as seals, printing ink, enclosure and adhesives, may contain sulfur, avoiding the exposure in acid or halogen environment.



Product Packaging Information

Tape and Reel Dimension

Edixeon Emitter

Revision History

Versions	Description	Release Date
1	Establish order code information	2015/03/06
2	Add the cautions of reliability	2017/05/26

About Edison Opto

Edison Opto is a leading manufacturer of high power LED and a solution provider experienced in LDMS. LDMS is an integrated program derived from the four essential technologies in LED lighting applications- Thermal Management, Electrical Scheme, Mechanical Refinement, Optical Optimization, to provide customer with various LED components and modules. More Information about the company and our products can be found at www.edison-opto.com

Copyright©2017 Edison Opto. All rights reserved. No part of publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photo copy, recording or any other information storage and retrieval system, without prior permission in writing from the publisher. The information in this publication are subject to change without notice.

www.edison-opto.com

For general assistance please contact: service@edison-opto.com.tw

For technical assistance please contact: LED.Detective@edison-opto.com.tw