

www.edison-opto.com.tw

High Power LEDs

Edixeon[®] A Series Datasheet

Edixeon[®] A series emitters are one of the highest flux LEDs in the world by Edison Opto. Edixeon[®] A series emitters are designed to satisfy more and more Solid-State lighting High Power LED applications for brilliant world such as flash light, indoor and outdoor decoration light. Edixeon[®] A series emitters are designed by particular package for High Power LED. 1W Edixeon[®] white has typical 100 lumens @350mA. Unlike most fluorescent sources, Edixeon[®] contains no mercury and has more energy efficient than other incandescent light source.

Features :

- Various colors
- More energy efficient than incandescent and most halogen lamps
- Low voltage operation
- Instant light
- Long operating life

Table of Contents

Product Nomenclature	
Environmental Compliance	3
LED Package Dimensions and Polarity	4
LED Package with Star Dimensions and Polarity	5
Absolute Maximum Ratings	б
Luminous Flux Characteristics	8
Forward Voltage Characteristics	10
JEDEC Information	11
Reliability Items and Failure Measures	12
Color Spectrum and Radiation Pattern	13
Dominant Wavelength Characteristics	16
Emission Angle Characteristics	
Optical & Electrical Characteristics	18
Product Soldering Instructions	
Reflow Profile	
Product Thermal Application Information	24
Product Electrical Application Information	
Product Packaging Information	

Product Nomenclature

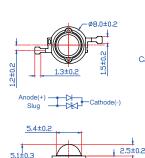
The following table describes the available color, power, and lens type. For more flux and forward voltage information, please consult the Bin Group document.

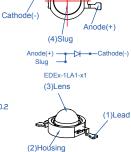
ΕD	Е	Х -	1 L	A 5	5 - E	1 -	Α	B 1	6		
X1	X2	Х3	X4 X5	X6 X7	7 X8	X9	X10	X11 2	X12		
X1 LED Ite	em	M	X2 odule	E	X3 mitting Cole	or	χ∠ Pow		Ler	X5 ns Item	
Code T	уре	Code	Туре	Code	Туре	(Code	Туре	Code	Туре	
ED Edi	xeon®	E S	Emitter Star	H X R A T	Cool White Neutral White Warm White Red Amber(615) True Green Blue	5	1 3	1W 3W	L B S F	Lambertanı Batwing(+/ Side Emittir Focusing(80	-40°) 1g(+/-80°)
X6 Housing	ltem	X7~X Shape l	-	X9 ng Curren		(10 B Color		AI	X10 PCB Color	- Sha	X11 ape Item
Code	Гуре		Code	е Туре	e Code	Туре	2	Cod	le T	ype Code	Туре
A V	Vhite		1 3	350m 700m	nA B S	Sta quare(25) quare(30)	k25mm	0	Gre	nite 10 een 16 ock 20	1.0mm 1.6mm 2.0mm

Figure 1. Edixeon®A series nomenclature

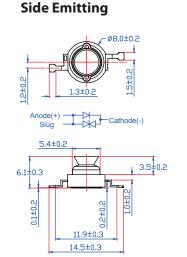
Environmental Compliance

Edixeon[®] A series are compliant to the Restriction of Hazardous Substances Directive or RoHS. The restricted materials including lead, mercury cadmium hexavalent chromium, polybrominated biphenyls (PBB) and polybrominated diphenyl ether (PBDE) are not used in Edixeon[®] A series to provide an environmentally friendly product to the customers.


LED Package Dimensions and Polarity

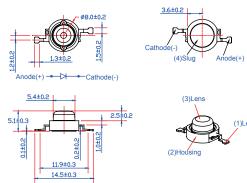

Lambertian, Side Emitting, Batwing, and Focusing Emitter Type

3.6±0.2


17


Lambertian

ø6.0±0.2



Batwing

0.1±0.2

1.0±0.1

0.2±0.2

11.9±0.3 14.5±0.3

Figure 2. Edixeon® A series dimensions

Notes:

1. All dimensions are in mm.

2. It is strongly recommended that the temperature of lead dose exceed 55°C.

3. Lambertian and side emitting series slug has polarity as anode.

4. It is important that the slug can't contact aluminum surface, It is strongly recommended that there should coat a uniform electrically isolated heat dissipation film on the aluminum surface.

LED Package with Star Dimensions and Polarity

EDSx-xxxx-xx-Ax16

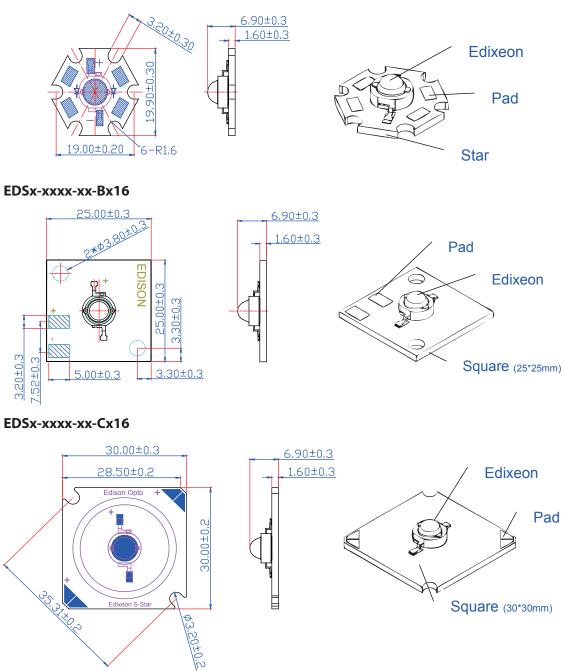


Figure 3. Edixeon® Star dimensions

Note: All dimensions are in mm.

Absolute Maximum Ratings

The following tables describe flux of Edixeon® A series under various current and different colors.

Parameter	Rating(1W)	Rating(3W)	Unit	Symbol
DC Forward Current	350	700	mA	I _F
Peak pulse current;(tp≤100µs, Duty cycle=0.25)	700	1,000	mA	
Reverse Voltage	5	5	V	V _R
Forward Voltage	5	5	V	V _F
LED junction Temperature (at DC Forward Current)	125	125	°C	T,
Operating Temperature	-30 ~ +110	-30 ~ +110	°C	
Storage Temperature	-40 ~ +120	-40 ~ +120	°C	
ESD Sensitivity (Lambertian & Side Emitting)	4,000	4,000	V	
ESD Sensitivity (Amber)		500	V	
ESD Sensitivity (Batwing & Focusing)	500		V	
Manual Soldering Time at 260°C(Max.)	5	5	Sec.	

Table 1. Absolute maximum ratings for Edixeon® A series

Notes:

1. Proper current derating must be observed to maintain junction temperature below the maximum at all time.

2. LEDs are not designed to be driven in reverse bias.

3. tp: Pulse width time

The following tables describe thermal resistance of Edixeon[®] A series under various current and different color.

Table 2. Temperature coefficient of forward voltage & thermal resistance junction to case characteristics at T_J=25°C for

Lens Item	Dart Namo	Part Name Color		/ΔΤ	R	∂ _{J-B}
Lensitem	Part Name	Color	Тур.	Units	Тур.	Unit
	EDEW-1LAx	Cool White	-2	mV/°C	11	°C/W
	EDEH-1LAx-E1	Neutral White	-2	mV/°C	11	°C/W
	EDEX-1LAx-x1	Warm White	-2	mV/°C	11	°C/W
Lambertian	EDER-1LA3	Red	-2	mV/°C	11	°C/W
	EDEA-1LA3	Amber	-2	mV/°C	11	°C/W
	EDET-1LA2	True Green	-2	mV/°C	11	°C/W
	EDEB-1LA5	Blue	-2	mV/°C	11	°C/W
L and Marrie	Davit Nava a	Calar	ΔV _F	/ΔΤ	R	θ _{J-B}
Lens Item	Part Name	Color	Тур.	Units	Тур.	Unit
Side Emitting Batwing Focusing	Batwing EDEW-1xA5		-2	mV/°C	15	°C/W

Edixeon® A series

Table 3. Temperature coefficient of forward voltage & thermal resistance junction to case characteristics at T_J=25°C for

Edixeon® A series

Lens Item	Dart Namo	Part Name Color		Re	Rθ _{J-B}	
Lens item	Part Name	Color	Тур.	Units	Тур.	Unit
	EDEW-3LA1-1	Cool White	-2	mV/°C	11	°C/W
	EDEH-3LA1-E3	Neutral White	-2	mV/°C	11	°C/W
	EDEX-3LA1-x3	Warm White	-2	mV/°C	11	°C/W
Lambertian	EDER-3LA3-1	Red	-2	mV/°C	11	°C/W
	EDEA-3LA3-1	Amber	-2	mV/°C	11	°C/W
	EDET-3LA1-1	True Green	-2	mV/°C	11	°C/W
	EDEB-3LA1-1	Blue	-2	mV/°C	11	°C/W

Luminous Flux Characteristics

The following tables describe flux of Edixeon® A series under various current and different color.

Lens Item	Part Name	Color	Flux	Unit
			Тур.	
	EDEW-1LA1-F1	Cool White	100.0	lm
	EDEW-1LA5	Cool White	100.0	Im
	EDEW-1LA5-F1	Cool White	110.0	lm
	EDEH-1LA5-E1	Neutral White	85.0	Im
	EDEX-1LA1	Warm White	70.0	Im
	EDEX-1LA1-F1	Warm White	75.0	Im
Lambertian	EDEX-1LA5-E1	Warm White	75.0	lm
	EDEX-1LA5-F1	Warm White	80.0	lm
	EDET-1LA2	True Green	70.0	lm
	EDER-1LA3	Red	50.0	lm
	EDEA-1LA3	Amber	45.0	lm
	EDEB-1LA5	Blue	20.0	lm
	EDEB-1LA5	Blue	20.0	Im
			Flux	
Lens Item	Part Name	Color		Unit
Cide emitting			Тур.	
Side emitting Batwing Focusing	EDEW-1xA5	Cool White	75.0	lm

Table 4. Luminous flux characteristics at $I_{F}{=}350\text{mA}$ and $T_{J}{=}25^{\circ}\text{C}{:}$ for 1W Edixeon* A series

Table 5. Luminous flux characteristics at I_F =700mA and T_J =25°C: for 3W Edixeon[®] A series

Lens Item	Part Name	Color	Flux	Unit
Lensitem		Color	Тур.	Offic
	EDEW-3LA1-1	Cool White	170.0	Im
	EDEH-3LA1-E3	Neutral White	150.0	lm
	EDEX-3LA1-E3	Warm White	130.0	Im
Lambertian	EDEX-3LA1-F3	Warm White	140.0	Im
Lambertian	EDER-3LA3-1	Red	90.0	Im
	EDEA-3LA3-1	Amber	85.0	Im
	EDET-3LA1-1	True Green	120.0	lm
	EDEB-3LA1-1	Blue	34.0	Im

Notes:

1. Flux is measured with an accuracy of \pm 10%.

2. All cool white, neutral white, warm white, true green and blue emitters are built with InGaN

3. All red emitters are built with AlGaInP

Forward Voltage Characteristics

The following table describes forward voltage of Edixeon® A series under various current.

Long House	Part Name	Color	V	:	Unit
Lens Item	Part Name	COIOI	Min.	Max.	Unit
	EDEW-1LA5	Cool White	3.1	4.0	V
	EDEW-1LA1	Cool White	3.1	4.0	V
	EDEW-1LA5-x1	Cool White	3.1	4.0	V
	EDEH-1LA5-x1	Neutral White	3.1	4.0	V
Lambertian	EDEX-1LA5-x1	Warm White	3.1	4.0	V
	EDER-1LA3	Red	2.0	3.0	V
	EDEA-1LA3	Amber	2.0	3.0	V
	EDET-1LA2	True Green	3.1	4.0	V
	EDEB-1LA5	Blue	3.1	4.0	V
			V	:	
Lens Item	Part Name	Color	Min.	Max.	Unit
Side emitting Batwing Focusing	EDEW-1xA5	Cool White	3.1	4.0	V

Table 6. Forward voltage characteristics at $I_{\rm F}{=}350\text{mA}$ and $T_{\rm J}{=}25^\circ\text{C}$ for 1W Edixeon* A series

Table 7. Forward voltage characteristics at I_F=700mA and T_J=25°C for 3W Edixeon® A series

Lens Item	Part Name	Color	V _F	-	Unit
Lensitem	Fait Name	COlor	Min.	Max.	Onit
	EDEW-3LA1-1	Cool White	3.4	4.3	V
	EDEW-3LA1-D3	Cool White	3.4	4.3	V
	EDEH-3LA1-x3	Neutral White	3.4	4.3	V
Lambertian	EDEX-3LA1-x3	Warm White	3.4	4.3	V
Lampertian	EDER-3LA3-1	Red	2.0	3.0	V
	EDEA-3LA3-1	Amber	2.0	3.0	V
	EDET-3LA1-1	True Green	3.4	4.3	V
	EDEB-3LA1-1	Blue	3.4	4.3	V

JEDEC Information

JEDEC is used to determine what classification level should be used for initial reliability qualification. Once identified, the LEDs can be properly packaged, stored and handled to avoid subsequent thermal and mechanical damage during the assembly solder attachment and/or repair operation. The present moisture sensitivity standard contains six levels, the lower the level, the longer the devices floor life. Edixeon[®] A series are certified at level 4. This means Edixeon[®] A series have a floor life of 72 hours before Edixeon[®] A series need to re-baked. If the package has been opened more than 1 week or the color of desicant changes, componenets should be dried for 20 hours at 60±5°C

	Floor Life		Soak Requirements				
Level	Time Conditions		Stan	Standard		Environment	
	Time	Conditions	Time (hours)	Conditions	Time (hours)	Conditions	
4	72 hours	≤30°C /60% RH	96 ¹ +5/-0	30°C/60% RH	20 +5/-0	60°C/60% RH	

Table 8. JEDEC characteristics at $T_{J}{=}25^{\circ}\!C$ for Edixeon* A series

	Floo	r l ifa	Soak Requirements				
Leve	Floor Life		Stan	dard	Accelerated Environment		
	Time	Condition	Time (hours)	Condition	Time (hours)	Condition	
1	Unlimited	≤30°C /85% RH	168 +5/-0	85°C/85% RH			
2	1 year	≤30°C /60% RH	168 +5/-0	85°C/60% RH			
2a	4 weeks	≤30°C /60% RH	696 ¹ +5/-0	30°C/60% RH	120 +1/-0	60°C/60% RH	
3	168 hours	≤30°C /60% RH	192 ¹ +5/-0	30°C/60% RH	40 +5/-0	60°C/60% RH	
4	72 hours	≤30°C /60% RH	96 ¹ +5/-0	30°C/60% RH	20 +5/-0	60°C/60% RH	
5	48 hours	≤30°C /60% RH	72 ¹ +5/-0	30°C/60% RH	15 +5/-0	60°C/60% RH	
5a	24 hours	≤30°C /60% RH	48 ¹ +5/-0	30°C/60% RH	10 +5/-0V	60°C/60% RH	
6	Time on tabel (TOL)	≤30°C /60% RH	TOL	30°C/60% RH			

Note:

The standard soak time includes a default value of 24 hours for semiconductor manufacturer's exposure time (MET) between bake and bag, and includes the maximum time allowed out of the bag at the distributor's facility.

Reliability Items and Failure Measures

Reliability test

The following table describes operating life, mechanical, and environmental tests performed on Edixeon[®] A series package.

Stress Tes	Stress Conditions	Stress Duration	Failure Criteria
Room Temperature Operating Life	25°C, $I_F = I_F Max DC$ (Note 1)	1,000 hours	Note 2
High Temperature High Humidity	85°C / 85%RH	1,000 hours	Note 2
Temperature Cycle	-40°C/100°C ,30 min dwell /<5min transfer	500 cycles	Note 2
High Temperature Storage Life	110°C	1,000 hours	Note 2
Low Temperature Storage Life	-40°C	1,000 hours	Note 2
Thermal Shock	-40°C / 125°C 15 min dwell /<10 sec transfer	2,00 cycles	No catastrophics
Mechanical Shock	1500 G, 0.5 msec pulse, 5 shocks each of 6 axis		No catastrophics
Natural Drop	On concrete from 1.2 m, 3X		No catastrophics
Variable Vibration Frequency	10-2000-10 Hz, log or linear sweep rate, 20 G about 1 min, 1.5 mm, 3X/axis		No catastrophics
Solder Heat Resistance (SHR)	260°C ± 5°C, 10 sec		No catastrophics

Table 9. Operating life, mechanical, and environmental characteristics and $T_J=25^{\circ}C$ for Edixeon[®] A series

Notes:

1. Depending on the maximum derating curve.

2. Failure Criteria:

. Failure Criteria: Electrical failures V_F shift >=10% Light Output Degradation % Iv shift >= 30% @1,000hrs or 200cycle Visual failures Broken or damaged package or lead Solderability < 95% wetting Dimension out of tolerance

Color Spectrum and Radiation Pattern

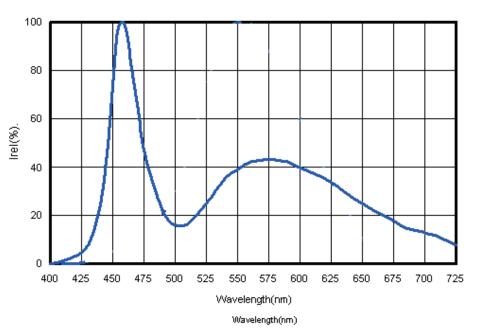


Figure 4. Cool White color spectrum at $T_1 = 25^{\circ}$ C.for Edixeon[®] A series

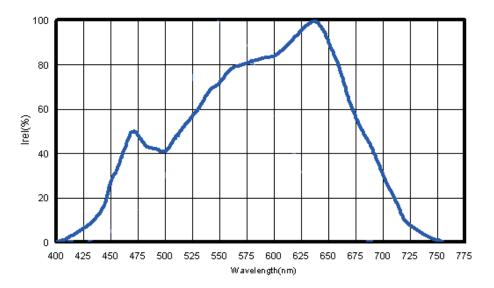


Figure 5. Neutral White and Warm White color spectrum at T_J=25°C for 1LC6°C1GA1 and 1LA1 Edixeon® A series

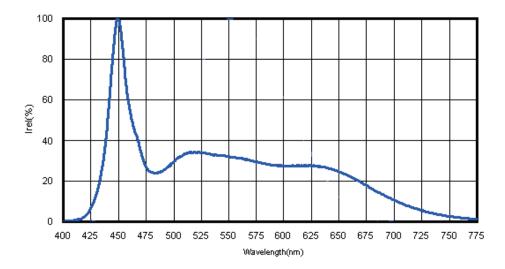


Figure 6. Color spectrum of typical CCT, standard eyes response to dotted curve line at $T_J = 25^{\circ}$ C for xLA5-Dx Edixeon[®] A series Cool White

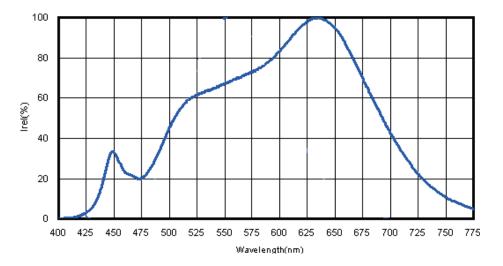


Figure 7. Color spectrum of typical CCT, standard eyes response to dotted curve line at $T_J = 25^{\circ}$ C for xLA5-Dx Edixeon[®] A series Neutral White ,and Warm White

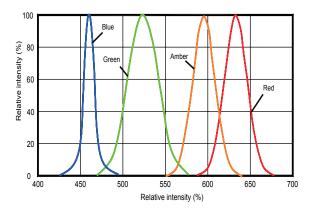


Figure 8. Red, Amber, True Green, Blue color spectrum at $T_{j}{=}25^{\circ}\text{C}$ for Edixeon $^{\circ}$ A series

Figure 10. Lambertain at $T_j = 25^{\circ}C$ for Cool White, Neutral White, and Warm White

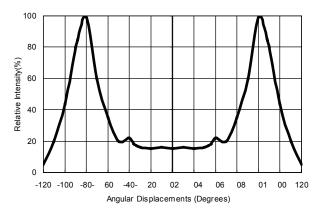


Figure 12. Side emitting at $T_J = 25^{\circ}C$ for Cool White

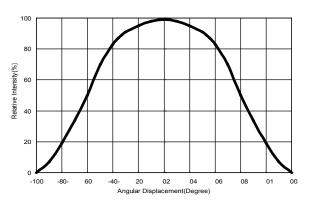


Figure 9. Lambertain at $T_J = 25^{\circ}C$ for Red and Amber

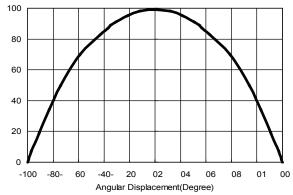


Figure 11. Lambertain at $T_J = 25^{\circ}C$ for Blue and True Green

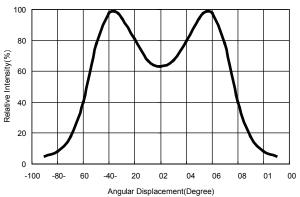


Figure 13. Batwing at $T_j=25^{\circ}C$ for Cool White

Dominant Wavelength Characteristics

Lens Item	Part Name	Color	λd/CCT		
			Min.	Max.	Unit
	EDEW-1LA5	Cool White	5,000	10,000	К
	EDEW-1LA1	Cool White	5,000	10,000	К
	EDEW-1LA5-x1	Cool White	5,000	10,000	К
	EDEH-1LA5-x1	Neutral White	3,800	5,000	К
Lambertian	EDEX-1LA5-x1	Warm White	2,670	3,800	К
	EDER-1LAx	Red	620	630	nm
	EDEA-1LAx	Amber	585	595	nm
	EDET-1LAx	True Green	515	535	nm
	EDEB-1LAx	Blue	455	475	nm
l ana ltan		Part Name Color	ССТ		11.54
Lens Item	Part Name		Min.	Max.	Unit
Side Emitting Batwing Focusing	EDEW-1xA5	Cool White	5,000	10,000	К

Table 10. Dominant Wavelength or color temperature Characteristics at $T_j=25^{\circ}C$ for 1W Edixeon[®] A series

Table 11. Color temperature Characteristics at $T_j=25^{\circ}C$ for 3W Edixeon[®] A series

Lens Item	Part Name	Color	CCT		Unit
		Color	Min.	Max.	Onit
	EDEW-3LA1-1	Cool White	5,000	10,000	к
	EDEW-3LA5-F3	Cool White	5,000	10,000	К
	EDEW-3LA1-x3	Cool White	5,000	10,000	к
	EDEH-3LA1-x3	Neutral White	3,800	5,000	К
Lambertian	EDEX-3LA1-x3	Warm White	2,670	3,800	к
	EDER-3LA3-1	Red	620	630	nm
	EDEA-3LA3-1	Amber	585	595	nm
	EDET-3LA1-1	True Green	515	535	nm
	EDEB-3LA1-1	Blue	455	475	nm

Notes:

1. Wavelength is measured with an accuracy of \pm 0.5nm

2. CCT is measured with an accuracy of \pm 5%

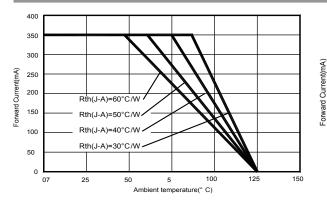

Emission Angle Characteristics

Table 12. Emission angle Characteristics at $T_J=25^{\circ}C$ for 1W Edixeon [®] A series					
Part Name	Color	2Θ½(Typ.)			Unit
Part Name		Lambertian	Batwing	Focusing	Onic
EDEW-1xA5	Cool White	135	110	80	Deg.
EDEW-1LA1	Cool White	135			Deg
EDEW-1LA5-x1	Cool White	135			Deg.
EDEH-1LA5-x1	Neutral White	135			Deg.
EDEX-1LA5-x1	Warm White	135			Deg.
EDER-1LA3	Red	120			Deg.
EDEA-1LA3	Amber	120			Deg.
EDET-1LA2	True Green	150			Deg.
EDEB-1LA5	Blue	150			Deg.
Part Name		Color	ӨРЕАК(Тур.)		l lucit
		COIDI	Batwing	Side emitting	Unit
EDEW-1xAx 0		Cool White	±40	±80	Deg.

Table 13. Emission angle Characteristics at $T_j=25^{\circ}C$ for 3W Edixeon[®] A series

Part Name	Color	201/2			Unit
Farthame	COlor	Max.	Тур.	Min.	Unit
EDEW-3LA1-1	Cool White		135		Deg.
EDEW-3LA5-x3	Cool White		135		Deg.
EDEW-3LA1-x3	Cool White		135		Deg.
EDEH-3LA1-x3	Neutral White		135		Deg.
EDEX-3LA1-x3	Warm White		135		Deg.
EDER-3LA3-1	Red		120		Deg.
EDEA-3LA3-1	Amber		120		Deg.
EDET-3LA1-1	True Green		150		Deg.
EDEB-3LA1-1	Blue		150		Deg.

Optical & Electrical Characteristics

Figure 14. Operating current & ambient temperature for 1W Edixeon® A series

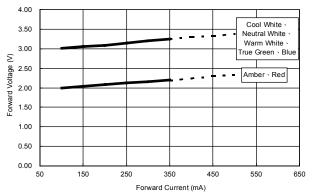


Figure 16. Forward current & forward voltage for 1W Edixeon® A series

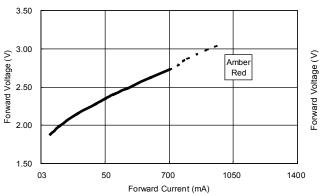


Figure 18. Forward current & forward voltage for 3W Edixeon® A series at $T_j=25^{\circ}C$

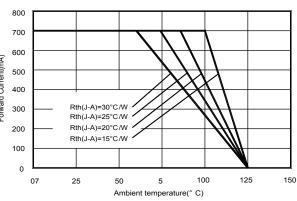
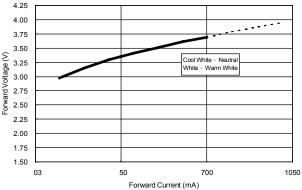



Figure 15. Operating current & ambient temperature for 3W Edixeon[®] A series

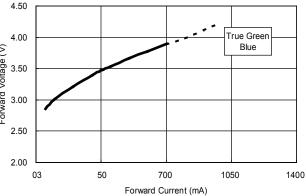


Figure 19. Forward current & forward voltage for 3W Edixeon® A series at $T_J=25^{\circ}C$

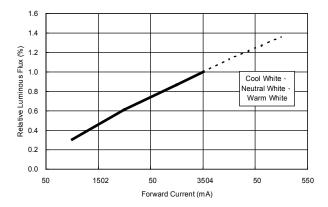


Figure 20. Forward current & relative luminous at $T_{J}\!\!=\!\!25^{\circ}\!C$ for 1W Edixeon* A series

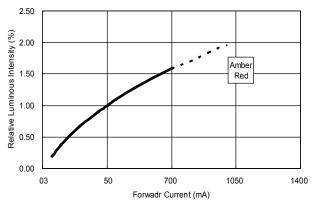


Figure 22. Forward current & relative luminous for 3W Edixeon[®] A series at $T_j=25^{\circ}C$

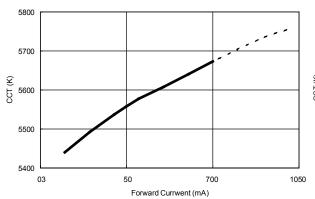


Figure 24. Forward current & CCT at $T_{_J}\!=\!25^\circ\!C$ for Edixeon* A series Cool White

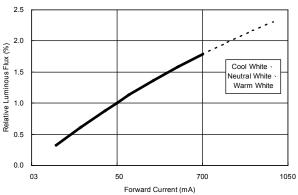
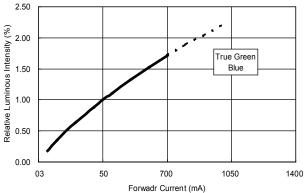



Figure 21. Forward current & relative luminous at $T_{j}{=}25^{\circ}C$ for 3W Edixeon* A series

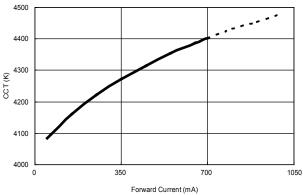


Figure 25. Forward current & CCT at $T_{\rm J}$ =25°C for Edixeon® A series Neutral White

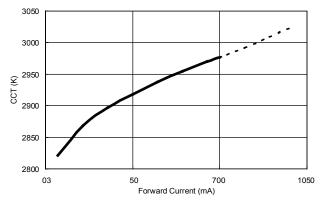


Figure 26. Forward current & CCT at $T_{j}{=}25^{\circ}\!C$ for Edixeon* A series Warm White

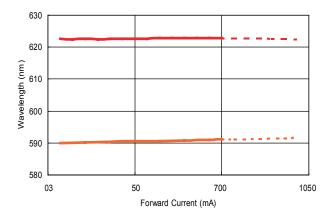


Figure 28. orward current & wavelength at $T_{\rm J}{=}25^{\circ}C$ for Edixeon* A series Red and Amber

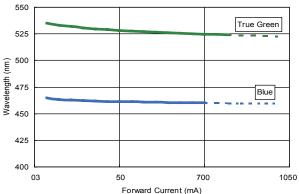


Figure 27. Forward current & wavelength at $T_{\rm J}{=}25^\circ C$ for Edixeon* A series True Green and Blue

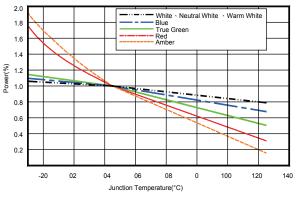


Figure 29. Junction temperature & power rate for Edixeon® A series

Product Soldering Instructions

The central circle pad at the bottom face of the package provides the main path for heat dissipation from the LED to the heat sink (heat sink contact).

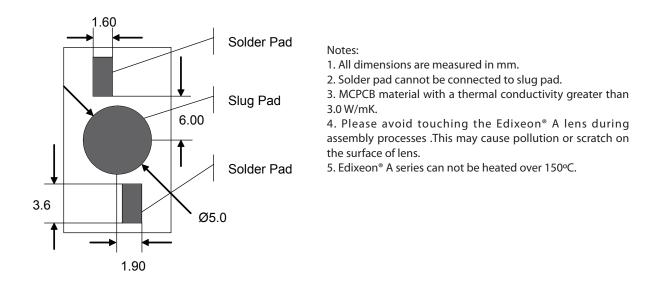


Figure 30. Pad dimensions

The choice of solder and the application method will dictate the specific amount of solder. For most consistent results, an automated dispensing system or a solder stencil printer is recommended.

Positive results will be used solder thickness that results in 50µm. The lamp can be placed on the PCB simultaneously with any other required SMD and reflow completed in a single step. Automated pick-and-place tools are recommended.

The bottom of the slug, which is electrically connected to anode(+), provides the main path for heat dissipation from LED to the heat-sink.

Recommend Solder Steps

To prevent mechanical failure of LEDs in the soldering process, a carefully controlled pre-heat and post-cooling sequence is necessary. The heating rate in an IR furnace depends on the absorption coefficients of the material surfaces and on the ratio of the component's mass to its irradiated surface. The temperature of parts in an IR furnace, with a mixture of radiation and convection, cannot be determined in advance. Temperature measurement may be performed by measuring the temperature of a specific component while it is being transported through the furnace. Influencing parameters on the internal temperature of the component are as follows:

- Time and power
- Mass of the component (for Edixeon® A series on MCPCB)
- Size of the component
- Size of the printed circuit board
- Absorption coefficient of the surfaces and MCPCB
- Packing density

Peak temperatures can vary greatly across the PC board during IR processes. The variables that contribute to this wide temperature range include the furnace type and the size, mass and relative location of the components on the board. Profiles must be carefully tested to determine the hottest and coolest points on the board. The hottest and coolest points should fall within the recommended temperatures. The profile of the reflow system should be based on design needs, the selected solder system and the solder-paste manufacturer's recommended reflow profile.

Reflow Profile

The following reflow soldering profiles are provided for reference. It is recommended that users follow the recommended soldering profile provided by the manufacturer of the solder paste used

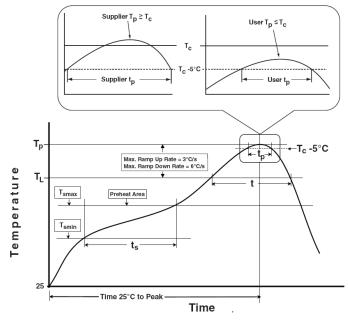
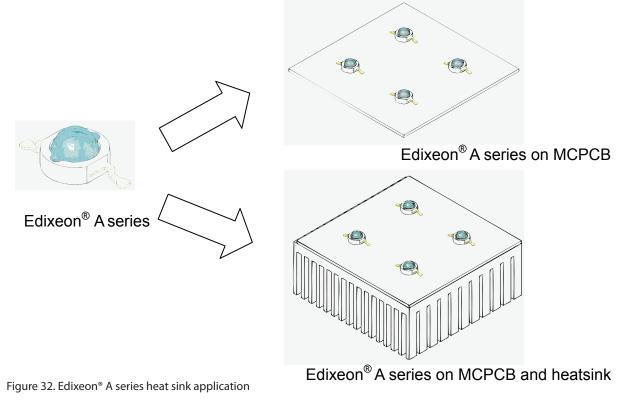


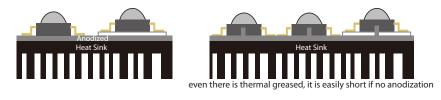
Figure 31. Reflow Profiles

Profile Feature	Pb-Free Assembly	
Preheat & Soak Temperature min (Tsmin) Temperature max (Tsmax) Time (Tsmin to Tsmax) (ts)	100 ℃ 120 ℃ 60-120 seconds	
Average ramp-up rate (Tsmax to Tp)	3 °C/second max.	
Liquidous temperature (TL) Time at liquidous (tL)	150 °C 20-50 seconds	
Peak package body temperature (Tp)*	150 °C ~160 °C *	
Classification temperature (Tc)	160 °C	
Time (tp)** within 5 °C of the specified classification temperature (Tc)	30** seconds	
Average ramp-down rate (Tp to Tsmax)	6°C/second max.	
Time 25°C to peak temperature	8 minutes max.	

Notes:


* Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.

** Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.



Product Thermal Application Information

Thermal grease should be evenly speeded with a thickness <100um. When assembling on MCPCB or heat sink carrier.

It is strongly recommanded the heat sink should be anodized

Please ensure the heat sink is flat enough to prevent the bad heat conductivity.

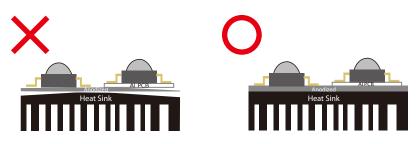


Figure 33. Edixeon® A series assemble with heat sink

www.edison-opto.com.tw

Thermal Resistance Application

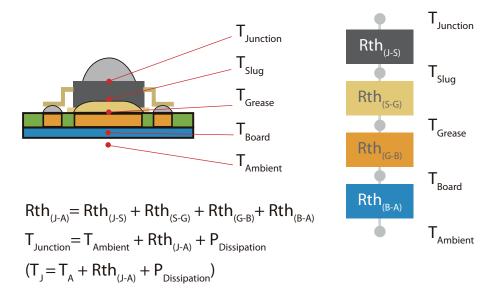


Figure 34. Rth and T_J for Edixeon[®] A series

Suggested Adhesive for Selection(such as thermal grease)

Ease of use Non-solvent, One-part

Fast tack free 3 minutes at 25°C

No corrosion Alcohol type of room temperature vulcanization (RTV)

Low volatility Low weight loss of silicone volatiles

Adhesion Excellent adhesion to most materials without use of a primer

Dielectric properties Cured rubber exhibits good dielectric properties

Excellent thermal stability and cold resistance Cured rubber provides wide service temperature range

Specification	Suggested Properties	
Take-free time	3~10 minutes	
Specific gravity	< 3 g/cm ²	
Thermal conductivity	> 2.5 W/mK	
Rth in using	< 1.8 °C/W	
Volume resistance	> 1x10 ¹⁴	
Lap shear adhesion strength	> 200 N/ cm ²	
Tensile strength	> 4 Mpa	

Table 15. Specification for adhesive properties

Thermal Resistance Calculation

The thermal resistance between two points is defined as the ratio of the difference in temperature to the power dissipated. For calculations in the following units used are °C/W. In the case of LEDs, the resistance of two important thermal paths affects the junction temperature:

From the LED junction to the thermal contact at the bottom of the package, this thermal resistance is governed by the package design. It is referred to as the thermal resistance between junction and slug ($Rth_{(J-S)}$)

From the thermal contact to ambient conditions, this thermal resistance is defined by the path between the slug ,board ,and ambient. It is referred to as the thermal resistance between slug and board ($Rth_{(S-B)}$) and between board and ambient ($Rth_{(B-A)}$).

The overall thermal resistance between the LED junction and ambient (Rth $_{(J-A)}$) can be modeled as the sum of the series resistances Rth $_{(J-S)}$, Rth $_{(S-B)}$, and Rth $_{(B-A)}$.

The following will show how to calculate Rth for each part of LED module.

1. Rth_(J-S) Assume Edixeon® Rth_(J-S)=10 °C/W

2. Rth_(S-G) If the thickness of thermal grease is 100um and area is $(6.4/2)2\pi$ mm². Thermal conductivity of thermal grease is 2.6 W/mK.

Thickness(um)

The Formula of Rth is -

Thermal Conductivity (W/mK) x Area(mm²)

Therefore Rth_(S-G) = $\frac{100}{2.6 \text{ X} (6.4/2)^2 \pi}$ = 1.2 °C/W

3. Rth $_{\rm (G-B)}$ The Rth of standard MCPCB is 1.5 °C/W

4. Rth_(B-A)

The Rth between board and air is mainly dependent on the total surface area.

Therefore Rth_(B-A) ÷ $\frac{500}{\text{Area(cm)}^2}$

If Area is 30cm ² Rth=16.7	Rth _(J-A) =10+1.2+1.5+16.7=29.4 °C/W
If Area is 60cm ² Rth=8.3	Rth _(J-A) =10+1.2+1.5+8.3 =21°C/W
If Area is 90cm ² Rth=5.5	Rth _(J-A) =10+1.2+1.5+5.5 =18.2°C/W

Junction Temperature Calculation

The total power dissipated by the LED is the product of the forward voltage (V_F) and the forward current (I_F) of the LED.

The temperature of the LED junction is the sum of the ambient temperature and the product of the thermal resistance from junction to ambient and the power dissipated.

$$\begin{split} T_{Junction} = & T_{Air} + Rth_{(J-A)} \times P_{Dissipation} \\ If one white Edixeon® in room temperature (25°C) operated 350mA and V_F=3.3V, \\ the P_{Dissipation}=& 0.35 \times 3.3=1.155W \end{split}$$

And junction temperature is

$$\begin{split} T_{Junction} &= 25^{\circ}\text{C} + 18.2 \text{ x } 1.155 = 46.021^{\circ}\text{C} \text{ (total surface area = 90 cm}^2\text{)} \\ T_{Junction} &= 25^{\circ}\text{C} + 21 \text{ x } 1.155 = 49.255 \text{ }^\circ\text{C} \text{ (total surface area = 60 cm}^2\text{)} \\ T_{Junction} &= 25^{\circ}\text{C} + 29.4 \text{ x } 1.155 = 58.957 \text{ }^\circ\text{C} \text{ (total surface area = 30 cm}^2\text{)} \end{split}$$

Example : Junction Temperature Calculation

One white LED is used under ambient temperature ($T_{Ambient}$) of 30°C. This LED is soldered on MCPCB (Area=10cm²). Calculate junction temperature.

Assuming a forward voltage of VF=3.3V at 350mA and total power dissipated is $P_{Dissipation}=1x 0.35 x 3.3= 1.155 W.$ LED Rth_(J-S)=10 °C/W.

With good design, $\rm Rth_{(S-G)}$ can be minimized to 1 oC/W. $\rm Rth_{(G-B)}$ of a standard MCPCB can be 1.5 $^{\circ}\rm C/W.$

The Rth between board and air is mainly dependent on the total surface area.

Therefore it can be calculated in formula

 $Rth_{(B-A)} = \frac{500}{10} = 50 \,^{\circ}C/W.$

Following the formula $T_{Junction} = T_{Ambient} + Rth_{(J-A)} \times P_{Dissipation}$ $T_{Junction} = 30 \text{ }^{\circ}\text{C} + (10 \text{ }^{\circ}\text{C/W} + 1 \text{ }^{\circ}\text{C/W} + 1.5 \text{ }^{\circ}\text{C/W} + 50 \text{ }^{\circ}\text{C/W}) \times 1.155W = 102.1875 \text{ }^{\circ}\text{C}$

That means this LED emitter is operated under good condition($T_{Junction}$ <125 °C).

It's strongly recommended to keep the junction temperature under 125 °C Or keep the temperature of emitter lead not exceed 55 °C

Product Electrical Application Information

Following graphs and descriptions show how to connect LED or LED module and plug to AC outlet.

Step1: Connect the wires of LED Module to the DC output of the driver.

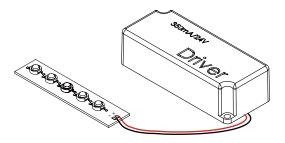


Figure 35. LED Module connect to the DC output of the driver

Step2: Plug the driver to AC outlet.

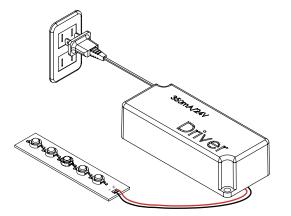


Figure 36. Plug the AC output of the driver to AC outlet

Caution: Never plug the driver to AC outlet before the LED Module is properly connected as this may generate transient voltage damage the LEDs permanently with a short or open circuit.

Product Packaging Information

Package Specifications

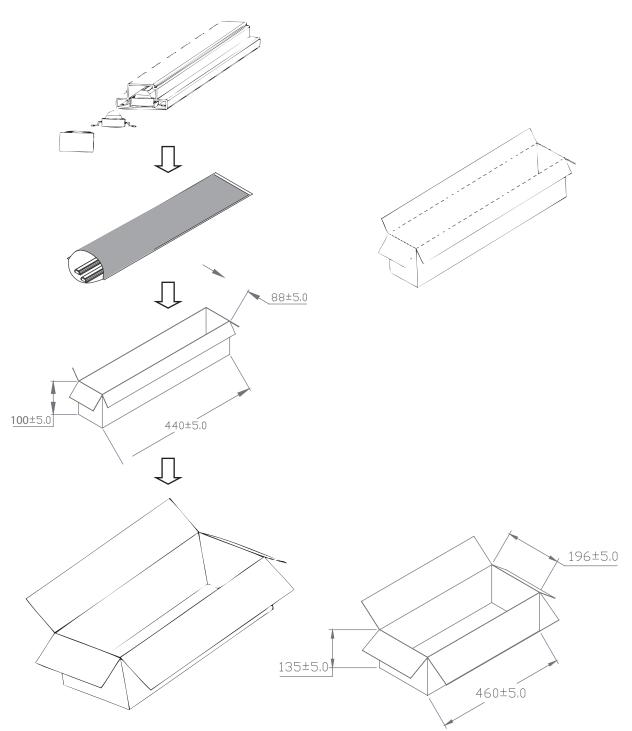


Figure 37. Packaging steps and dimensions

The Label

Label on tube:

Figure 38. Label on tube

Label on box:

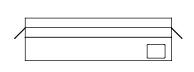


Figure 39. Label on box

Carbel on carton:

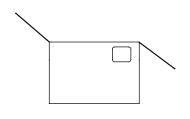
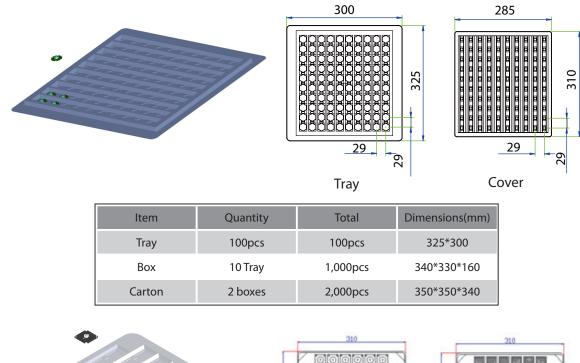
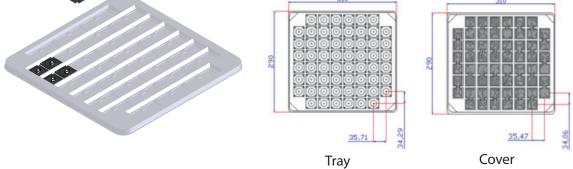


Figure 40. Label on carton

Notes:

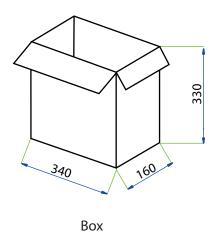
1. All dimensions are in mm.

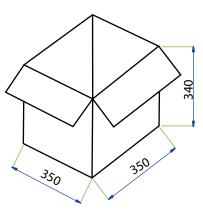

2. There are 50pcs emitters in a tube


3. There are 20 tubes in a bag.

4. There are 2 bags in a box

5. A bag contains one humidity indicator card and drying agent





Item	Quantity	Total	Dimensions(mm)
Tray	60pcs	60pcs	310*290
Box	10 Tray	600pcs	340*330*160
Carton	2 boxes	1200pcs	350*350*340

Figure 41. Edixeon® Star Package

Carton

Figure 42. Edixeon® A atar package and dimensions

Notes:

1. All Dimensions are in mm.

2. There are 60 pcs stars in a tray.(Tray+Cover)

3. There are 10 trays in an box.

4. There are 2 boxes in a carton.